Math 115
Spring 2017
Lecture 5

Solve:
(1)
$$3(x-7) + 2x = 5(x+1) - 26$$

 $3x-21 + 2x = 5x + 5 - 26$
 $5x-21 = 5x-21$
 $5x-5x = -21+21$
 $3x-5x = -12-12$
 $3x-5x = -12-12$

Solve for specific Variable:

1)
$$P = 2L + 2W$$
 for $W > 3$ $2x^2 + 3y = 10$
 $P - 2L = 2W \rightarrow W = \frac{P - 2L}{2}$

2) $A = P(1+T)$ for $P > 2$
 $A = P(1+T)$ for $P > 3$

Solve for Y , write and in $Y = mx + b$
 $2x^2 + 5y = 10$
 $y = \frac{-2}{5}x + \frac{10}{5}$
 $y = \frac{-2}{5}x + 2$

The length of a rectangle is 3 ft shorter than 4 times its width. Perimeter is

$$64 \text{ ft. find its area.}$$

$$2L + 2W = 64$$

$$2(4x-3) + 2(x) = 64$$

$$8x - 6 + 2x = 64$$

$$10x=70$$

Solving linear in equalities:

final Ans.
$$x < \alpha$$
, $x < \alpha$, $x < \alpha$, $x > \alpha$, $x > \alpha$

be $exting like solving linear equation but reverse the inequality direction Sollowing multiplication or division by a neg. number $exting linear equation for example $exting linear equation for example example $exting linear equation for example example example equation for example exa$$$$$$$$$$$$$$$$$$$$$$

$$2(x-1) + 5 > 4x - 13$$

$$2x - 2 + 5 > 4x - 13$$

$$2x + 3 > 4x - 13$$

$$2x - 4x > -13 - 3$$

$$-2x > -16$$
Divide by -2

Solve:
$$-3(x+2) - 8 \le 2x + 6$$

 $-3x - 6 - 8 \le 2x + 6$
 $-3x - 14 \le 2x + 6$
 $-3x - 2x \le 6 + 14$
 $-5x \le 20$
 $-5x \ge 20$
 $-5x \ge 20$
 $-5x \ge 20$
 $-5x \ge 20$

The difference of
$$T$$
 and T times some number $\frac{-8}{-8}$.

Find all Such numbers. Let T be all Such numbers T at least T at most T at most T and T and T and T at T at T at T at T at T and T at T at T and T at T at T and T at T at T at T and T at T at T and T are T at T and T at T and T are T at T and T are T at T and T are T are T and T are T and T are T and T are T and T are T and T are T are T and T are T are T and T are T and T are T are T and T are T are T and T are T and T are T are T and T are T are T are T and T are T and T are T are T are T and T are T are T and T are T are T and T are T are T are T are T and T are T are T and T are T are

Daily rental Sor a Pick-up at Home Depot
is \$30 plus 5¢ per mile. \$5¢ \$5.05

Your budget is \$100, and You need this
Pick up for one day. How many miles can You
drive to stay within Your budget?
Your entire cost \$100
30 +.05 M \$100

.05 M \$100-30

M\$\leq\$1400

max. is 1400

miles.

Solve
$$7 \le 2x - 1 \le 15$$

 $7+1 \le 2x - 1+1 \le 15+1$
 $8 \le 2x \le 16$
 $\frac{8}{2} \le \frac{2}{2}x \le \frac{16}{2}$
Solve $-5 \le 3x + 1 \le 13$
 $-5-1 \le 3x + 1 - 1 \le 13 - 1$
 $-6 \le 3x \le 12$

Solve
$$3 \le -2x + 3 < 17$$

$$3-3 \le -2x + 3-3 < 17-3$$

$$0 \le -2x < 14$$

$$0 \ge -2x < 14$$

$$0 \ge 2 \ge -2x > \frac{14}{-2}$$
Smaller #
on the left hand side

Solve
$$-8 \le -5x + 2 \le 22$$

 $-8-2 \le -5x \le 22-2$
 $-10 \ge -5x \ge 20$
 $-\frac{10}{-5} \ge \frac{-5}{-5}x \ge \frac{20}{-5}$ larger
 $2 \ge x - 4 = 4 = 4 = 4$
Smaller

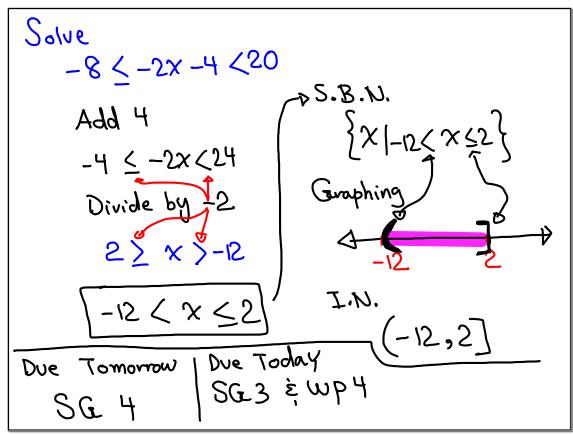
when Solving inequalities, we can write
Sinal ans in 3-ways
(1) Set-builder notation {x}
Such that
② Graphing & use (,) for < or >, use [,]
3) Interval notation for \leq , \geq
(,) or (,], [,], [,]

Solve, express Sinal ans in all 3 ways.

$$-3x + 7 < -5$$
 (i) S.B.N. $\begin{cases} x \mid x > 4 \end{cases}$
 $-3x < -5 - 7$
 $-3x < -12$
 $\frac{-3}{-3}x > \frac{-12}{-3}$
 $x > 4$

(2) Geraphing

 $x > 4$


(3) Interval Notation

 $(4, \infty)$

Solve, final ans in all 3-ways:

$$2x + 8 \ge 4(x - 3) - 1$$

 $2x + 8 \ge 4x - 12 - 1$
 $2x + 8 \ge 4x - 13$
 $2x - 4x \ge -13 - 8$
 $-2x \ge -21$
 $-2x \le -21$
 $x \le \frac{21}{2}$ $x \le 10.5$ 3 I.N.
 $(-\infty, 10.5]$

Solve
$$-2 \le 3x + 4 < 19$$
 ① S.B.N. $\{x \mid -2 \le x < 5\}$
Subtract 4
 $-6 \le 3x < 15$ ② Geraph
Divide by 3
 $-2 \le x < 5$ ③ I.N. $[-2,5)$

- ① Determine the type of equation: 3(2x-5)-2(3x-7)=-1
- ② Solve For y: 3x 2y = 8Ans. in y=mx+b form